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It is known that LAME was the first to transform the equations of elasticity
into orthogonal curvilinear coordinates. Such a transformation, put forward by
him for the first time in a memorandum published in Vol. 6 of the Liouville
Journal. (1st Series), was later reproduced in the XVth and XVIth of the Lecons
sur les coordonnées curvilignes.

The elegant but somewhat prolix calculations of the illustrious French ge-
ometer were significantly abbreviated, with a procedure in part different, by C.
NEUMANN and by the late and lamented BORCHARDT.

The first of these two authors, in his most interesting Memorandum: Zur The-
orie der Elasticitdt (v. 7 of the Berlin Journal, 1859) took up the question again
from the beginning, calculating the potential of molecular forces in isotropic bod-
ies, and deducing directly the known equations of the variation of this potential.
The simplifications obtained in this work result primarily from certain relations,
preliminarily established by the author, among those he calls coefficients of
variation of the said potential, before and after the transformation into curvilinear
coordinates. (The coefficients are but the expressions by which the variations of
the unknown functions are found to be multiplied, in that part of the variation of
the integral which is represented by an integral of an equal order of multiplicity).

BORCHARDT also, in the elegant article entitled: Transformation der Elas-
ticitdatsgleichungen in allgemeine orthogonale Coordinaten (v. 76 of the cited
Journal, 1873) reproduced in the Bulletin des Sciences mathématiques et as-
tronomiques (v. 8, 1875), founded his deductions upon the variation of the
integral which represents the potential of the elastic forces; but the simplification
that he attained, derives from both the suppression of certain parts of the inte-
gral which are convertible into service integrals and which make no contribution



whatsoever to the indefinite equations, and from the direct transformation of the
expression which represents the square of the elementary rotation.

Fundamentally, the essential artifice behind the transformation, on the part
of all three of the cited authors, consists in the grouping of the three unknown
functions and their nine derivatives under four only distinct expressions, which are
those representing cubic dilatation and the three components of rotation. In fact
LAME begins directly with the Cartesian equations among these four expressions,
while NEUMANN and BORCHARDT have pre-ordered the elementary potential in
such a form that these expressions alone furnish the terms for the transformed
equations.

Now the said artifice, even if it does permit us to arrive more quickly at
these equations, as far as the nature of the argument permits, nonetheless leaves
obscured a very interesting circumstance which, as it seems, has not yet been
noticed by anyone, and which leads to quite unexpected consequences.

To put this point in the greatest clarity, I will begin by establishing directly
the general equations of elastic equilibrium in orthogonal coordinates of whatever
species.

Let q1, g2, g3 be the curvilinear othogonal coordinates of any point whatever
in a three dimensional space and let

ds* = Q1dq} + Q3dgs + Q3dg3 (1)

be the expression of the square of any linear element whatever in this space.

If you vary the position of each point, you find:

dséds = Q1dqidéq, + Q3dqgaddgy + Q3dgsddgs
+Q10Q1dg? + Q20Qqdg? + Q30Q3dgz.

But we have fori=1,2,3
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we can write

% = AT001+A5065 + N3005 + A2 Ag0wr + Ag A1 Gz +As Asdws, (2)e

where the three quantities A1, Ag, A3, defined by

\ = Qiin’
ds
are the cosines of the angles which the linear element ds makes with the three
coordinate lines ¢1, go, g3 (thus designating, for purposes of brevity, the lines along
which only one of the coordinates varies, ¢; alone, ¢go alone, or ¢3).

Now suppose we have a continuous material system, occupying the connected
space S, limited by a surface o, and let this system be in equilibrium under
the action: 1st) of externally applied forces to each element of the volume dS
and to each element of the surface do; 2nd) of internal forces, in each element
dS, developed from the deformation which are determined within the system by
external forces. Let that system, already deformed and in equilibrium, be one
whose points are determined by the coordinates ¢1, ¢2, ¢3.

Let

FdS,  FydS,  FydS

be the components in the g1, g2, g3 directions, of the external force acting on the
element of volume dS, and let

(pldO', @Zdo-a QOSdO-

be the analogous components of the external force aplied to the surface do.
To express the equilibrium conditions of the system, one should imagine that
every one of its points (¢1, g2, g3) undergoes a new displacement, by which its



coordinates become ¢q; + 0q1, g2 + 0¢2, q3 + dg3. The work developed by such
displacement by the externally acting force on the element of volume dS is

(F1Q10q1 + F2Q29¢2 + F3Q36¢s) dS,

and that developed by the externally acting force on the surface element do is

(p1Q16G1 + ©2Q20q2 + ©3Q30q3) do.

As for the internal forces, if these do not develop work—unless it be that the
imagined translation changes the length of the linear elements—it is manifest that
the work developed by these on the element dS cannot have any other form than

(@1(501 + @2502 + @3503 + Qléwl + 926w2 + Qgé&)g) dS

since the variation of the linear element depends on (2), upon the six quantities
06;, dw; and is cancelled out with these. The six multipliers ©;, §2; are functions
of ¢1, g2, g3 whose significance we do not need to investigate for the moment.
From what we have said to this point, the general equation of equilibrium is the
following;:

/ (F1Q10q1 + F2Q20¢s + F3Q39¢3) dS

+/ (01Q10g1 + 2Q20¢2 + p3Q3043) do (3)

+ / (@1691 + @2502 + @3693 + 915W1 + diédz + 936&)3) ds =0.

To extract from this formula the equations of equilibrium, properly speaking,
it is necessary to appropriately transform the integrals of the form

Beginning with the first, we have (2)
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and, for reasons of brevity putting Q1 Q2 Q3 =V
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Now from the well-known equation
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"n" is the internal normal to the surface o, we have

where

/8 (VO (5qZ /QZG cos(ng;)dg;do,

but also

_ OVO;dq;  0:0Q;
/ ©:06,dS = / { e }dS
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Passing to the second integral, we have (2)
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or, by the theorem we recall,

2
/ QdwdS = — / {8(Q5§3291)5q2+ (Q(;Q;' s q3} g

- / {Q2 cos(ngs)dgs + Q3 cos(ngz)dgs } Qi do.

Analogously are transformed the other two integrals

/ QQéLdeS, / Qg&ﬂg,dS.

Substituting in equation (3) the values so transformed of the six integrals

/ 0,56,dS, / 0, 6w;dS,

we obtain a result of the following form

/ (815(]1 -+ 525(]2 -+ 535Q3) dS -+ / (015q1 =+ 02(5(]2 -+ 0'35Q3) do = 0,



the which, because the variation of d¢; is arbitrarily governed, is divided into the
three equations

S; =0, Sy =0, S3=0

valid at every point of the space S, and into the three equations

0'1:0, 0'2:0, 0'3:0

valid at every point of the surface o.
The actual substitutions give the three indefinite equations
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and the three equations at the limits

1 = O cos(ng;) + Q3 cos(ngs) + Qs cos(ngs),
g = Q3 cos(ngqy) + Oq cos(ngs) + 2y cos(ngs), (4),

w3 = Qy cos(ng;) + Q) cos(ngs) + O3 cos(ngs).
These last equations furnish the definition of the six functions ©;, €2;. These in
fact are applicable to every portion of the system, provided one represent with ¢;
the components of the forces which must be applied to the surface of such portion

in order to maintain it in equilibrium, when the remaining portion is destroyed.
Now for an element doy of a surface ¢; = const., we have from (4),

Y = @b Qogl) = Q37 ( ) = Q27

for an element dos of a surface ¢o = const., we have

W=, =0, P =qy

for an element dos of a surface g3 = const., we have



3 3 3
o) =0, =0, P =6,
Thus the quantities ©, Oy, O3 represent the unit tensions which are developed
normally to the surface coordinates ¢; = const., g = const., g3 = const., and the
quantities 21, €2y, 3 represent the unit tensions which develop tangentially to
the said surfaces. The equalities

o =, o =P, o =,

which result from the preceding values, are those which one ordinarily assumes
from the consideration of the elementary tetrahedron.

The equations (4) coincide with those which LAME deduced from the transfor-
mation of analogous equations in Cartesian coordinates (Lecon sur les coordonnées
curvilignes, p. 272). The only difference consists of the fact that LAME introduced
into them the derivatives with respect to the arcs instead of (using) @1, @2, Qs:
but it is very easy to pass from one to the other form by way of formulae which I
will indicate below.

But what is more important to note, which is made clearly evident by the
process followed here for establishing those equations, is that the space to which
they refer is not defined by anything other than the expression (1) of the linear
element, without any conditions (being set) for the functions @1, @2, @3. Thus
the equations (4), (4), possess a much greater generality than their counterparts
in Cartesian coordinates, and, in particular, it is useful to note immediately that
these are independent of the postulate of EucLID. This fact is intimately con-
nected with what I alluded to at the beginning. But before going further, it is
necessary to complete the theory put forward (by us) of the equations of elastic
equilibrium.

Let us put
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Comparing these quantities 6;, w; with the quantities 06;, dw; defined by equations
(2), we discern that the second are variations of the first, if we admit that

W1 =

W =



dz; = 0q;,
and the coordinates ¢; to be invariable with respect to 4.

Admitting, as is generally done, that the deformation produced by the external
forces be so small that one can treat as differentials the total variations under-
gone by the coordinates of each point, it is legitimate to understand the initial
coordinates to be substituted for the final ones in the functions @;, ©;, €2;, and,
considering the quantities x; as the total increments of the initial coordinates g;,
we can establish the equation

Ad
d—ss = 01)\f + 92)\3 + 03)\§ + Wi A3 + wadz A1 + w3 Ag, (5)a

analogous to (2),, to determine the total variation Ads undergone by the element
ds during the deformation.

The six quantities 6;, w; (as the preceding 66;, dw;) have a most simple ge-
ometric significance. In fact, by the effect of the deformation produced by the
external forces, the three orthogonal linear elements

ds; = Q1dq, dsy = (QQ2dqo, dss = (QQ3dgs

of which ds is the resultant, become three linear elements ds}, ds), dsj no longer
orthogonal but slightly oblique, while ds becomes the resultant ds’ of these three
new elements. If we then designate by C;, Cy, C3 the complements of the plane
angles

(dsy, dsy), (ds, ds'), (ds}, ds),

we have, from the elementary formula of the resultant,

ds” = ds?? + dsi + ds + 2C,dsyds}y + 2Codsyds’| + 2C3ds' dsb,.
Putting

dsi = (1+an)ds;,  dsy=(1+ap)dsy,  dsy=(1+az)ds;,

ds'=(1+a)ds

we have from here

o = 011)\% + Odg)\% + C¥3/\§ + Cl)\g)\y, + CQ/\3/\1 + Cg)\l)\g.

But it is evident that we also have

_ds'—ds  Ads
- ds  ds’
such that, comparing the preceding value of o with the formula (5),, the result is

«



a; = 0;,

Ci = W.

thus the three quantities #; and the three quantities w; represent respectively the
(relative) lengthening of the sides and the shrinking of the angles of an orthogonal
parallelepiped element bounded by the six surface coordinates.

We admit, for well-known reasons, that the virtual work of the internal forces

@1501 + @2502 + @3503 + Q15w1 + Qzéwg + 935w3

(with reference to a unit of volume) be an exact variation with respect to
the quantities x; which define the deformation already occurred. The preceding
expression, thanks to the substitution of the values of the variations 66;, dw; which
are drawn from the formulae (5), becomes:
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From the form of this expression, it turns out that, if a function II exists of which
this expression be the exact variation, this function cannot but depend upon g;,
upon z; and upon z;;, which for brevity we can put as

and properly must be

(9xi .
8(]j '
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Hence the six relations
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the which express that the functions x1, zo, £3 and their first derivatives show up
in IT in only six combinations.

017 02: 03, Wi, Wwa, w3,

however, we also have

oIl oIl oIl oIl oIl oIl
II=—00; + —50 — 003 +- —90 ) —
O = 5g, 001+ g, 002+ 5, 005 + 5 0w+ 5 0wa & 57 duws
that is to say
oIl oIl )
Gi_a_ei’ Q; = a—wi’ (1—1,2a3)- (7)

This conclusion could be founded upon the simple observation that the six
quantities 6;, w; defined by the equations (5) are not connected to one another by
any linear relation independent of z;, x;;. But the preceding deductions brings
out some relations which immediately allow giving the equations (4) and (4), a
new form. In fact, by virtue of the formulae (6), (6),, the said equations become

1

Qi Yi = Z Qz COS nQJ)

and it is precisely in this form that the general equations of elasticity were given
by C. NEUMANN, in the cited memorandum. Properly speaking, the functions
introduced by NEUMANN (as also by LAME) are not the z;, but the Q;x;, that is
they are the components of the displacements: but it is easy to see that if we put

ki = Qizi
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and thence

0Q;
kij = Qizij + 5 i,
J J 8C]j

we have, considering as a function of k; and of k;;,

o a_HQ.ij‘3 ATl AQ;
or; Ok o Oki; Og;’
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and by means of these relations, the equations (8) reduce themselves quickly to
the following:

1”':35(V§§j) oIl
=92 —a, ok
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which are those of NEUMANN.
Let us deal now with establishing the equations of elasticity by isotropic means,
i.e., by means in which II has the form

1= —% (A¥* + Bw), (9)

where

’19 == 01 + 02 + 03,
w = wf + w% + wg — 4(9293 + 9391 + 9192).

The constants A and B, which depend upon the nature of the medium, are those
used by GREEN (On the laws of reflexion and refraction of light etc., 1837). In
ordinary theory, the relations between these two constants and the density of the
medium represent the squares of the velocities of propagation of the longitudinal
and of the transversal waves.

It is worth noting right away that the quantity ¢, that is the cubic dilatation,
has a very simple expression. In fact from the first three equations (5) we easily
deduce



12

1 {8(Vx1)+3(vfﬂz)+5(w3)} (10)

J=—=
Vv (9(]1 86]2 aQS

From equation (9), by virtue of (7), we deduce:

@1 = —A19 + 2B(02 + 93), Ql = —Bwl,
@2 =—Ad + 23(03 + 01), QQ = —B(,UQ, (11)
G Q

3 = —A19 + 2B(01 + 92), 3 = —ng,

and these values must be substitued in the second members of the equations (4),
(4)a-

Such substitution does not offer any difficulty with respect to the equations
(4)a-

With respect to the equations (4), it is useful to first of all separate the part
multiplied by A from that multiplied by B. As for the first part, we immediately
recognice that the second members of the equation (4) reduce themselves to

10(V9) o0V
A _
{V 0q; Y 3%}

ie., to

319
As for the part which contains the factor B, this part has, in the second member
of the first equation (4), the following expression:

_B {_28 [V (62+0)] | 0(QiQaws)

0 (Q1Qaw2)
v * }

oq ¢ 0q3
Oy +6500Q, 0O3+60,00Q2 0 +0:00Q; }
2B + +
{ Q1 Oq Q2 Oq Qs Oq

or, after some obvious reductions,

2B {ngl (Q2Q3) . Q Ql (QZGQ) . QlQQa (Q303)
6 q1 a q1 a‘h
@)
10 (Q1Qs3ws) 0 (Q1Qaw2)
+§ 8q2 + 2 8(]3 }

The direct substitution of the values (5) into this expression (C) would lead
to a quite prolix calculation, as LAME remarks (in the two places cited); precisely
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to avoid such prolixity, he prefers to begin with the Cartesian equations appro-
priately prepared to that end. But such a fallback would not be admissible here,
after the observations made by us about the greater generality of the equations
(4) with respect to the Cartesian. Thus it is necessary to carry out the indicated
calculation, the which however, based upon a reasonable induction, can be some-
what abbreviated. Since, in fact, it is known that in ordinary space, the final
equations of the isotropy only contain, in the terms multiplied by B, the compo-
nents of elementary rotation, it is natural to think that these components must
also figure in the equations relative to a more general space, since the concept of
elementary rotation, according to the definition by W. THOMSON, holds for all
space.

In my Kinematics of fluids (§ 11) I have already given the general values
of the components of rotation in any whatsoever curvilinear coordinates. With
orthogonal coordinates, ¢i, ¢2, ¢3 these formulae become

g _ 1 {5(Q§x3) - 3(62%332)}
' Q2Q3 g2 dq3 ’
_ 1 [o(Qtz) 0(Q§$3)}
2= Q3Q1 { dg3 Oq ’ (12)
o — 1 {8 (Q322) . 9 (Q%xl)}
’ Q10 oq g, ’

where 1, 19, U3 designate the double components of elementary rotation which
accompanies the deformation of the system or elastic medium. These are also the
expression which figure in the equations transformed by LAME, by NEUMANN and
by BORCHARDT. The presence, in these formulae, of the products Q%x; suggests
putting

Qiri = K;

and writing the equations (5) in the following form:

Wl:é%—fq{f‘é% 1+Qigaa% 2 Q%%%Kg,
Q3Q1w2=%—lq<:’+aa—lq<;— <é%—%l{3+é%fg),
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The substitution of these values in the expression (C) is done quite easily, if we
keep the terms which contain the partial derivatives of the first and second orders
of the functions of K; separate from those which contain the functions themselves.
The first are grouped together without much difficulty, in the expression

B@: {5(Q2792) 3(@3193)}_ ()

Q2Qs -

0q3 0qz
The second group of terms constitute a homogeneous and linear function of the
quantities x1, T2, x3. The coefficients of this function are somewhat complicated;
but, with a little attention, these can be easily reduced to a form whose symmetry
makes one quickly recognize that the law which governed the composition of all
three of the analogous linear functions which go into the equations (4). Putting,
that is,

Hzi{ia(Qng)}+i{ia(Q3Ql)}+i{ia(czlcb)}
o | Q1 Oq 0 | Q2 Ogo Ogz | Q3  Ogs
1 0Q2 0Qs3 " 1 0Q30Q: 1 0Ch 8@2}
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and, taking into account the identiy
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Hyy = Hyy + H33 = H, (13),

we find that the linear function of the z; relative to the first of the equations (4),
can be put under the form

B 2B
Q203

{(Hi1 — H) Q121 + H12Q272 + Hi3Q323}

or
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B 0d
_Q2Q3 a(Qll“l). ©)
putting
¢ = ZHijQinﬂfﬂj - HZQZQ%Q (14)
ij i

Gathering up the partial expressions (), (7), () and forming the analogous
expressions for the second and third of the equations (4), we obtain thus the
following indefinite equations of elastic isotropic media:

A% _ B {a(Q2792)_8(Q3793)}+ B 0P LR =0

Q1 0q1 Q2Q3 dg3 g, Q1Q2Q3 0 (Q121) ' ’
A0)_ B [0(@Qs) 3(@1191)} B 09 _

Q2 Ogo B Q301 { g1 0q3 ” Q1Q2Q3 0 (Q272) TR=0 15
A0 _ B {a(wl)_a(wz)}+ B 90 .
Q30q3  Q1Q2 0gy oq Q1Q2Q3 0 (Qs73) ’ .

As for the equations at the limits (4),, these do not give rise to any reduction
worthy of note, nor do they differ from the ordinary ones, and therefore I do not
believe it necessary to transcribe them here at length.

From the form of the equations (15) one deduces that, to form the same
equations with the method of the variation of the potential, it is enough to take
this potential under the form of

1 1 B®
— —AY? + =B (92 + 192 + 92 +7}d8, 15),
/ {2 2 (9 9 + 03) Q1Q2Q3 (15)

where we can quickly conclude that the expression

_®
Q1Q2Q3

possesses the same invariant character of the expressions

9  and 97+ 95+

Comparing the preceding equations (15) with those given by LAME, and gen-
erally admitted, we can see that the first do not agree with the second except
when the function ® be equal to zero independently of any hypothesis about the
x; functions, the which, given the identity (13),, demands that the following hold:

Hy, =0, Hy, =0, Hs3 =0, Hy; =0, Hs =0, Hy, =0.
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Now these six equations are precisely those which, in v. 5 of the Journal
of Liouville and later in the Vth of the Lecons sur les coordonnées curvilignes,
LAME himself demonstrated to be necessary because the expression (1) must be
a transformation of

ds* = dz?® + dy? + d2*

or, in other words, because the space in which the elastic means under consid-
eration exists, be Euclidean space. Thus the ordinary equations of isotropy are
subordinate to the truth of the postulate of Euclid, while the general equations
(4) are, as I have already observed, independent of it.

It is due to this fact, which I alluded to at the beginning of this essay, that the
cited authors were forced to adopt various artifices for deducing the equations of
isotropy from the general equations, when the form of the linear element, because
of the indeterminateness of its coeflicients, does not include a priori the Euclidean
hypothesis. Thus, for example, BORCHARDT profits from the form which takes
the integral (15),, when the coordinates are Cartesian, to directly reduce to (the
following form)

%AW + %B (97 + 95 + 3)
the quantity under the integral.

If we abandon the Euclidean hypothesis, the equations (15) become the equa-
tions of isotropy in a space of constant curvature. 1 say constant curvature, be-
cause if the curvature of the space were variable, it would not be legitimate to
consider a priori the coefficients A and B of the expression (9) as a constant
quantity. In this regard we can observe that, if the quantity A were variable with
i, the part corresponding to the term %AﬁQ of IT in the second members of the
equations (15) would be still more simple, that it would be represented, as it is
easy to verify, by

19(A9)
Qi 0g

This is not so for the part relative to the other term %Bw. Now in spaces of
constant curvature, the function ® assumes a most simple form.

In fact the linear element of a space of constant curvature = a can always be
put under the form indicated by RIEMANN

(i=1,2,3).

_ Vd@ + dgd + dg?

ds =
1+9(¢t+a3+a3)

which is very useful here because of its symmetry. Putting

1
Q:1+%(q%+q§+q§)(=Q1:Q2=Q3);
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we find (13)
H = -3Q%a,
thence
Hy, = Hyy = H33 = —Q?’a,
and finally

Hy3 = H3; = Hijp = 0.

As a result of this, when the coordinates ¢; are those of RIEMANN, that is those
which I called stereographic in Fundamental theory of spaces of constant curvature
(v. 2 of these Annals), we have

o

R1Q2Q3

Now the quanatity @Q? (z? + z3 + z2) is the square of the displacement of point
(41, g2, g3), that is to say, it is that quantity which, with the general orthogonal
coordinates referred to in expression (1), is represented by Q%z? + Q322 + Q%x2.
Thus in every space which has a constant curvature a relative to orthogonal
coordinates, we have

= 20Q? (:c% + x% + x%)

P
— =20 (Q%2? + Q%% + Q%2 16
Q1Q2Q3 ( 11 242 3 3) ( )
and as a consequence
H = —300Q:1Q2Qs,
Hi1 = Hy = H33 = —aQ1(Q20Qs, (16),

Hys = H3; = Hyjp = 0.

These latter six formulae can be transformed, as can the analogous ones of
LAME, into just as many geometric relations between the curvatures of the or-
thogonal surfaces. Denoting, in fact, with % the geodetic curvature of the line
of intersection of the two surfaces ¢; = const., ¢; = const., when this line is con-
sidered as existing on the first surface (such that the geodetic curvature of the
same line, considered instead as existing on the second surface, shall be denoted
by r]%), we have, from well-known formulae, the following relations:

an Q1Q2 an Q1Q3

a—lh 32 ’ 8—q3 T'23 ’
0Q _ Q:Qs  9Qr _ @@
0q3 13 ’ oq 31 ’

Qs _ Q3G 0Qs _ Q3Q2

oq B To1 0q2 To
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By way of these relations it is possible to eliminate from the last six equations
(16), all the derivatives of the three functions @;, and, if moreover we put

Qidg; = ds;,
we can also eliminate from them the functions of (); themselves. Operating thus,
we find that the three equations

Hy1 = Hy = H33 = —aQ1Q2Q3

are equivalent to the following

oL 9L 1 1

T12 E
e s +a=0,
sy Osy 12, i o3
1 1
E+aa+%+%+ +a=0, (16)s
083 0s1 Tas T T32T12
- 95 1 1
s + 4+ +a=0.

2
681 882 31 3o 713723

As for the other three equations

Hys = H3 = Hip = 0,

which are identical to three of LAME’s, these transform (translate) themselves
into the corresponding relations (Coordonnées curvilignes, p. 80) among the radii
7ij, except that these must naturally be considered as radii of geodetic curvature
and not as radii of principal curvature. Moreover, it is to be noted that LAME
takes the curvature with the opposite sign.

Designating with a1, as, a3 the measures of curvature (according to GAUSS)
of the three surfaces ¢; = const., go = const., g3 = const. at the point (¢, go,
¢3), and comparing the preceding equations (16), with the well-known equations
of BONNET, we derive

1
o = + a,
21731
1
oy = + a, (16),
732712
1
a3 = + «.
713723

When o = 0, that is when the space is Euclidean, the radii of geodetic cur-
vature (r91,731), (732,712), (713, 723) can be confounded with the radii of principal
curvature of the three orthogonal surfaces ¢, = const., g = const., g3 = const.,
and the preceding values of oy, as, as coincide with those given by the theorem
of GAUss.
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By virtue of the form (16), found for the function ®, the indefinite equations
of the isotropy in a space of constant o can be put definitively in the following
form:

A o9 B {‘9 (@202) 0 (Q?’ﬁ?’)} +4aBQiz1+ FL =0

Q1 0q; N Q203 0qs 0o

A00 _ B [0(Qsls) a(Qlﬁl)} _

Q200 Q3Qn { dqy 9gs +4aBQyry + F> = 0, (17)
A3 B (o) a(ng)} " o

Qs 0q3  Q1Q3 { 0qy oq +4aBQsr3 + F3 = 0.

One could foresee a priori that the curvature of the space should not be
without influence upon the equations of elasticity; but it is without doubt most
notable that such influence manifest itself there in such a simple form.

In spite of this simplicity, the theory of elastic media in spaces of constant
curvature present most significant differences with respect to the ordinary theory,
such as to merit, as it seems to me, a careful study, because of the consequences
to which this theory can lead.

I will restrict myself, for the moment, to pointing out summarily some results
relative to the case in which the elastic deformation occurs without rotation.

Since in this case the three quantities ¥; defined by the equations (12), are
Zero we can put

1 oU

T 20 (18)
and thence (10)
9= AU (18)0.
where
_ 1 i Q2Q36_U i Q3Q13_U i Q1Q28_U
0= 10205 {6q1 < @1 8‘11> - 0q2 ( Q2 6q2> * g3 ( Q3 06]3>}' (18):

The equations (17) become in this way

)
9, (AB2U +4aBUY + QiF =0, (i=1,2,3).

and show that the forces F' must have a potential V', that is, it must be true that

10V

E:_ )
Q Og;

(18)c
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and with that the said three equations are equivalent to the single

ANU + 4aBU +V =0, (19)

in which we must understand as interpenetrated in U, the quantity, independent
of q1, g2, g3, which is introduced by the integration.
If we suppose 9 = 0, that is AU = 0, we have from this

V =—4aBU, AV =0, (19),

and thus we obtain a deformation, without any rotation nor dilatation, in which
the force and the displacement have in every point the same (or the opposite)
direction and magnitudes constantly proportional. Such a result, which has no
counterpart in Euclidean space, presents a singular analogy with certain modern
concepts about action of dielectric media (MAXWELL, Treatise on electricity and
magnetism, v. 1, p. 63). If one admits the equality of direction between the force
and the displacement, one must suppose the curvature of the space be negative.
To get a better grasp of the idea, it is worth considering a particular form of
the linear element of space with constant curvature «; that is, it is useful to put

ds? = d€* + ésin2 (&) (dn* + sin® nd¢?), (20)

where £ is the radius vector drawn from a fixed centre to any point whatever of
the space, and 7, ¢ are two angles which determine the direction of this radius,
These quantities &, n, ¢ are the spherical coordinates of space with a constant
curvature. With such coordinates we have

o 10 (., oU 1 9 (. U 1 U
0= Grtem e () g ) = oy (073 ) * iy | (0

and we satisfy the equation AU = 0 taking

U = pcot (/) , (21)
where g is a constant. This solution corresponds to the ordinary Newtonian
elementary potential.

Continuing to designate with z1, 9, 3 the increments of the three variables
&, m, ¢ caused by the elastic deformation, we have in the case of such hypothesis

_dU VL

= _ =0 =0
but also (5)
d*U 1d°U
led—{f?’ Oy = 05 T34
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The internal tensions of the medium are thus determined (11) by the compo-
nents

d’U d?U
61:_2Bd—£2’ @2:@3:_8—

(21)a

that is to say they are represented by an active force, such as compression or
tension, in the direction of the lines of force, and by a force acting in the oppo-
site direction, that is as tension or as compression respectively, in the direction
perpendicular to the said lines.

This result also is in harmony with the noted concepts of FARADAY. In actual
fact MAXWELL, developing these concepts mathematically (Op. cit., v. 1, p. 128),
supposes the compression in the direction of the lines of force and the tension in
the normal direction to be equal in absolute value; but recently HELMHOLTZ, in
a new dielectric theory (Monatsberichte of the Berlin Academy, February, 1881),
has already been led, from other considerations, to admit the possibility of a ratio
other than unity.

Another simple solution to the equation AU = 0, considered under the form
of (20),, is given by

U = u, (22)

where 4 is a constant. This solution corresponds, or rather is identical, to the
ordinary electromagnetic potential of a rectilinear current which runs along the
polar axis n = 0. For the calculation of the internal tensions which occur in this
case, however, another form of the linear element is more useful, and that is the
following:

ds* = du® + cos® (uv/a) d2* + ésin2 (uv/e) d¢?,

where u is the distance of any point whatever of the space from a fixed axis, z is
the distance of the foot of this perpendicular from a fixed point of the same axis,
¢ is the angle that the plane conducted by the fixed axis and by the arbitrary
point (that is, by the "any point whatsoever’ chosen) makes with a fixed plane.
These quantities u, z, ( are the cylindrical coordinates of space with a constant
curvature.

By means of these coordinates we find (supposing that the current runs along
the fixed axis u = 0)

o
z1 =0, T =0, I3 = —5—

sin? (uy/a)’

and hence from the equations (5) one draws
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01 = 92 = 03 = 0,
2pacos (ur/a)
sin? (u/a)

The internal tensions of the medium are thus determined (11) by the compo-
nents

LL)l:O, Wy = — ; LL)3:0.

(22)q
2B
Q =0, Q, — /,.I,CY2COS (u\/a)’ Q,
sin® (uy/c)

that is to say are represented uniquely by a force of torsion around the line u =
const., z = const., or around the lines which are in one and the same plane with
the line along which the current runs, and have their points equidistant from
the line. If, maintaining the particular hypothesis (18), we wish to consider the
vibratory motion of an elastic medium, in the absence of any accelerating external
force, we must admit that the function U depends, besides upon the coordinates
g;, upon the time ¢, and put

=0,

pQ’L tz )

" 1 0 0’U
T Q.06 \ "o )

where p is the density. Thus the latter relationship, compared with that of (18),,
gives

or (18)

0%U
p 2’
however the general equation of vibratory motion, drawn from (19), is

V =

0*U
o
Let us put, for considering a simple stationary vibration,

= AALU + 40BU. (23)

U = V¥ cos (@ + ,u) (24)
T

where W is a function only of the coordinates, and 7, u are two constants, the first
of which represents the period of a complete vibration, and the second the phase.
Substituting this value of U in the equation (23) we get
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m2p

AN + 4 (—2 + aB> T =0. (24),
T

When the curvature « is zero (Euclidean space), or positive (RIEMANNian
space, or spherical), there is no admissible value of 7 which nullifies the coefficient
of U. But when the curvature « is negative (GAUSSian space, or pseudospherical),
that is when we have

1
ﬁv
where R is the radius of constant curvature, taking

= WR\/g (24),

the coefficient of ¥ becomes zero, and we obtain a singular class of vibrations,

defined by
1
2t |B
U=v — = 24),
(254 "

by the which the function ¥ of the three coordinates g; satisfies the equation

o=—

AU =0 (24)4

These vibrations, which are simultaneously free of rotation and dilatation, and
which, as such, have no counterpart in ordinary space (except the so-called in-
compressible fluid), occur everywhere in the same direction as the force caused by
the potential ¥ and have an amplitude proportional to this force. Such vibratory
motion brings to birth internal tensions in the vibrating medium, the which one
calculates with the formulae (5) and (11), as in the case of equilibrium, and all
contain the periodic factor. Were we to take, for example, for U, the values (21),
(22) which satisfy the equation (24)4, we would still find the tensions (21),, (22),,
multiplied by the said factor.

If in equation (23) we suppose that U depend only upon £ and upon ¢ [where
¢ has the same significance as in the equation (20)], we obtain the differential
equation of spherical waves, under the form

PU A D
o~ sin’ (€y/a) 0¢

lin Beltrami’s Original: (24)4

p {sin2 (V) g—g} + 4aBU. (25)
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One satisfies this equation by putting

U— E cos (g€ + ht + k)
T sin(eva)

(25)a

where g, h, k, E are four constants, the first two of which are connected by the
relation

A A+4B

h2:_ 2
p p

Q. (25)s

We obtain thus progressive spherical waves, whose velocity of propagation

h
a==+—
9
and whose wavelength
2
A=+
g

are connected by the relation

s A A+4BaX

“ T p 4n?

(25)c

Supposing g?> = « one would return to the case considered above. These
results, noted here with a haste for which I have to ask the reader to excuse me,
seem to me such as to counsel that some attention be given to the new equations

(17).

Pavia, 5 June, 1881.

Extracted from the Milano 1881 - Printed by BERNARDONI
Annals of pure and applied mathematics of C. Rebeschini and Co.
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Appendix
g; curvilinear othogonal coordinates of a point in 3d space
ds linear element
dq; variation of the positions (displacements)
Q; metrical coefficients (principal values of the metrical tensor)
V = @1 Q2 Q3 (invariant of the metrical tensor)
0, = %5_(;1: + %: dilatationes along coordinate axes g;
w; shear deformation of face perpendicular to the axes
A; cosines of the angles which ds makes with the coordinate lines

87)

9q;

n inward normal to the surface o (cos(ng;) =7 - e = 70 -
dS element of volume

do element of surface

F; external force per volume

©; external force per surface

©;, €; unit tensions normal /tangential to the ¢; axes

x; total increments of the initial coordinates ¢; by the deformation
IT deformation energy

A, B elastic material constants, as used by GREEN

¥ = 01 + 0y + 65: cubic dilatation (relative volumetric expansion)

w = w? + w2 + w2 — 4(0s03 + 030, + 0,0): change of shape

¥; rotations (around the coordinate axes)

o (constant) curvature of space (with negative curvature: o = —75)

rij radii of curvature (:- ist the geodetic curvature of the line of intersection of
ij
the two surfaces ¢, = const., ¢; = const.)

«; (non-constant) curvatures of surfaces ¢; = const.
&, n, ¢ spherical coordinates of space with a constant curvature

u, z, ¢ cylindrical coordinates of space with a constant curvature





